
WebFX Documentation

Introduction

What is WebFX?
WebFX is a JavaFX application transpiler powered by GWT. It can transpile a JavaFX application
into a traditional self-contained pure JavaScript web app (with no plugin or server required for its
execution in the browser).

How it works

Table of Contents
Introduction. 1

What is WebFX? . 1

How it works . 1

Benefits . 2

Limitations. 4

Getting started . 4

Prerequisites . 4

Introducing the WebFX CLI . 5

Installing the WebFX CLI . 6

Creating your first WebFX app . 8

Web platform . 10

Desktop platform (JAR) . 11

Desktop platform (embed JRE) . 11

Desktop platform (native) . 12

Android platform . 14

iOS platform . 14

GitHub workflows . 15

Developing in your IDE . 15

1

https://www.gwtproject.org

OpenJFX
WebFX kit

Your repository

Higher layer

Lower layer

GWT compatible
version

Scene graph -> DOM
mapper

Your JavaFX app

GWT

Web app

Patching
process

Replaced
by

uses JavaFX API

The WebFX kit is the heart of WebFX. It’s a modified version of OpenJFX that can be transpiled. This
is achieved by patching the higher layer of OpenJFX (which contains the main JavaFX features and
API) to make it GWT compatible, and by replacing the lower layer (the graphic rendering pipeline)
by a scene graph → DOM mapper (the DOM being finally rendered by the browser).

Benefits

No server

There are already great solutions to run Swing or JavaFX applications in the browser without
plugins by actually running them on a server. And these solutions don’t have the limitations WebFX
currently has. However, a standard self-contained JS packaging is a much more simple, scalable
and reliable execution model. This is precisely the benefit of WebFX, and probably the main reason
why you would prefer it over the other existing solutions.

Cross-platform

Your WebFX application

Web
All major browsers

WebFX

Desktop
Windows, macOS & Linux

Java or Gluon

Mobiles
Android & iOS

Gluon

In addition to the web platform, a WebFX application can also run on desktops & mobiles. WebFX
will invoke the standard Java toolchain to produce desktop executables (embedding an optimized
JRE), and the Gluon toolchains to produce native executables for the desktop and mobiles.

Some alternative technologies or JVM languages allow you to do the same but only for the
application logic, because they don’t offer a cross-platform UI toolkit. With WebFX, you can do a full

2

https://github.com/webfx-project/webfx/tree/main/webfx-kit

cross-platform development of your entire application from a single-source codebase.

Java full-stack

Writing your whole stack in Java is a big advantage, keeping your environment simple and
homogenous from a single Java IDE. This prevents you from having to master other complex
ecosystems such as JavaScript or TypeScript, and also allows you to share common code between
your backend and frontend using the Java module system - a great advantage compared to
heterogeneous systems.

Performance

Despite the big size of OpenJFX, WebFX can produce lightweight web apps, as demonstrated by the
demos and the website:

WebFX application JS size *

Colorful circles demo 93 kB

Tally counter demo 104 kB

Modern gauge demo 141 kB

Enzo clocks demo 260 kB

FX2048 demo 181 kB

SpaceFX demo 142 kB

DemoFX demo 128 kB

Ray tracer demo 137 kB

Mandelbrot demo 145 kB

Website 226 kB

* compressed JS size transiting over the network, without eventual images or other resources

The secret? Three things:

• The scene graph → DOM mapper is much thinner than the original OpenJFX lower layer, which
has to reimplement many features a browser already has.

• GWT runs a dead code elimination (tree-shaking) process, which removes the JavaFX classes not
used by the WebFX application.

• GWT produces amazingly compact and optimized JS code, leading to highly-performant web
apps.

Gradual learning curve

WebFX is not an additional UI toolkit to learn - it’s an emulation of the well-known and well-
documented JavaFX API. All the powerful JavaFX features that you know and love are available for
your web app. You will feel right at home with WebFX!

3

https://colorfulcircles.webfx.dev
https://tallycounter.webfx.dev
https://moderngauge.webfx.dev
https://enzoclocks.webfx.dev
https://fx2048.webfx.dev
https://spacefx.webfx.dev
https://demofx.webfx.dev
https://raytracer.webfx.dev
https://mandelbrot.webfx.dev
https://webfx.dev

Fast development cycles

You don’t need to run regular GWT compilations like you would do with a traditional GWT
development, because you can already run and debug your WebFX application directly in your Java
IDE with the OpenJFX runtime. You typically transpile your app only at the end of a development
cycle to check the web version, after you have finished developing a feature using the standard
JavaFX development model.

Free and open source

WebFX is an open source initiative released under Apache 2.0 license.

Limitations
The WebFX kit coverage is for now limited to the essential features of JavaFX. So to successfully
compile to the web, your JavaFX code needs to meet these 2 requirements:

• use only the features covered by the WebFX kit (you can check out the JavaDoc to get an idea of
this coverage)

• be compatible with GWT (no reflection, no multi-threading, no blocking code, etc…)

When a JavaFX application meets these 2 requirements, we will call it a WebFX application, and it
can be transpiled to the web simply by running a GWT compilation of it together with the WebFX
kit.

The main JavaFX features not yet covered are: JavaFX CSS, FXML, 3D, and most complex controls
(ComboBox, TableView, TreeView,…). 3D is not a priority. We will first present alternative solutions
to JavaFX CSS and FXML, and provide simpler alternative WebFX controls to ComboBox and
TableView, before considering their actual emulation.

Note for the impatient: OpenJFX is a huge library (about 10MB) compared to
standard JS frameworks (typically 100KB). It may take some time to complete its
coverage - thank you for your understanding. In the near future we hope to
release a set of contributor guidelines and will endeavour to build an online
community of developers around the project.

Getting started

Prerequisites
To develop WebFX applications, you will need the following software already installed on your
development machine:

• JDK 13 or above

• Maven

• Git

4

https://javadoc.webfx.dev

• Your preferred Java IDE

Introducing the WebFX CLI
The WebFX CLI is an essential Command Line Interface tool that will assist you developing WebFX
applications. It will create your application modules as follows:

Your repository
xxx-application (1)
xxx-application-gluon (2)
xxx-application-gwt (3)
xxx-application-openjfx (4)

① This module contains the JavaFX code of your application. It is cross-platform (not yet bound to
a specific platform) and therefore not executable.

② This module targets the native desktop & mobile platforms. It binds your application with the
OpenJFX runtime, and can call the Gluon toolchain to produce the Windows, macOS, Linux,
Android & iOS native executables (depending on the OS of your local machine).

③ This module targets the web platform. It binds your application with the WebFX kit, and can call
GWT to produce the web app.

④ This module targets the standard desktop platform. It binds your application with the OpenJFX
runtime, and is directly executable in your IDE. It can also call the standard Java toolchain to
produce the desktop executables (Windows, macOS or Linux) with an embed JRE.

You can create several WebFX applications in the same repository. As your application code grows,
you can split your code into more modules. The CLI will help you to create and maintain all your
modules. For each module, it will create and maintain your build chain as follows:

webfx-cli

pom.xml module-info.java GWT module.gwt.xml
super sources, bundles, etc... GraalVM conf

webfx.xml Your module source code

Your inputs will be centralized in the WebFX module files named webfx.xml (same location as
pom.xml), and the CLI will generate the rest of the build chain from them. For example, a typical
directive in webfx.xml will be:

<dependencies>
 <used-by-source-modules/>

5

</dependencies>

This directive is asking the CLI to identify the list of your dependencies from an analysis of your
source code, and automatically populate the dependencies in pom.xml, module-info.java,
module.gwt.xml, etc…

During that process, the CLI takes care of the cross-platform aspects: when a feature is platform-
dependent (a different implementation exists for different platforms), it will pick up the right
modules (those whose implementation matches the target platform). It is at this point, for example,
that the CLI will replace the OpenJFX modules with the WebFX kit modules in your GWT
application module.

Installing the WebFX CLI
Since we haven’t published an official WebFX release yet, the way to install the CLI for now is to
clone the webfx-cli repository, and build it with Maven.

 We will distribute the CLI in a better way with the first WebFX official release.

Cloning the webfx-cli repository

SSH

git clone git@github.com:webfx-project/webfx-cli.git

HTTPS

git clone https://github.com/webfx-project/webfx-cli.git

Building webfx-cli with Maven

This is achieved by running the Maven package goal under the webfx-cli directory:

cd webfx-cli
mvn package

As previously mentioned, WebFX CLI requires JDK 13 or above to successfully
compile.

This generates an executable fat jar in the target folder that we can execute with java:

java -jar target/webfx-cli-0.1.0-SNAPSHOT-fat.jar

The webfx.sh and webfx.bat script files (located under the webfx-cli directory) are simply executing

6

https://github.com/webfx-project/webfx-cli

the same fat jar. We will use them in the next step.

Creating a permanent webfx alias

To easily invoke the CLI from a terminal, we need to create a permanent webfx alias. This is done
with the following commands (to run under the webfx-cli directory):

Linux

echo "alias webfx='sh \"$(cd "$(dirname "$1")" && pwd -P)/$(basename
"$1")/webfx.sh\"'" >> ~/.bashrc ①

source ~/.bashrc ②

① Adding the alias to the shell profile

② Applying it to the current session

macOS >= Catalina

echo "alias webfx='sh \"$(cd "$(dirname "$1")" && pwd -P)/$(basename
"$1")/webfx.sh\"'" >> ~/.zshrc ①

source ~/.zshrc ②

① Adding the alias to the shell profile

② Applying it to the current session

macOS < Catalina

echo "alias webfx='sh \"$(cd "$(dirname "$1")" && pwd -P)/$(basename
"$1")/webfx.sh\"'" >> ~/.bash_profile ①

source ~/.bash_profile ②

① Adding the alias to the shell profile

② Applying it to the current session

Windows

You can simply add the webfx-cli repository to your environment path, so webfx.bat
will be directly executed when typing the webfx command.

Now you should be able to invoke the CLI from the terminal:

webfx --help

7

Updating the WebFX CLI to the latest version

You can check for update at anytime by running:

webfx bump cli

If a new version is available, it will download it and build it for you.

This is so far the only command that uses git (a git pull of the webfx-cli
repository). The CLI will not call git on your own repositories.

Creating your first WebFX app

Creating and initializing your repository

Let’s create our first WebFX application. We need to create the repository directory and ask the CLI
to initialize it, passing it the groupId, artifactId and version of our application.

mkdir webfx-example
cd webfx-example
webfx init org.example:webfx-example:1.0.0-SNAPSHOT

The init command creates only 2 files: webfx.xml and pom.xml. Note that if this is the first time you
have used the CLI, it will download some other files through Maven to retrieve essential
information about the available WebFX modules.

Creating your application modules

When we create an application, we pass the fully qualified name of the JavaFX class we want to
create, and the prefix to use for the application modules:

webfx create application --prefix webfx-example
org.example.webfxexample.WebFxExampleApplication --helloWorld

This command created the following modules:

webfx-example
webfx-example-application
webfx-example-application-gluon
webfx-example-application-gwt
webfx-example-application-openjfx

The JavaFX class is located in the first module. Normally its start() method is empty at this stage,

8

but because we specified the --helloWorld option, it has been populated with this simple template:

public class WebFxExampleApplication extends Application {

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setScene(new Scene(new StackPane(new Text("Hello world!")), 800,
600));
 primaryStage.show();
 }

}

Building your application

The following command will do a simple build of your application (without generating any final
executable):

webfx build

To generate the executables for the different platforms, you need to pass some extra build options.
You can have the list in the build help:

webfx build --help

Some builds require the installation of third-party software, as shown in the following table:

Target platform Build platform Install command Build option Executable file(s)

Web Linux, macOS or
Windows

--gwt html

Any desktop OS
with Java

Linux, macOS or
Windows

--openjfx-fatjar fat jar

Linux (embed JRE) Linux ubuntu-tools --openjfx-desktop executable,
.AppImage, .rpm,

.deb

macOS (embed
JRE)

macOS xcode --openjfx-desktop executable, .dmg,
.pkg

Windows (embed
JRE)

Windows wix*, inno* --openjfx-desktop executable, .msi,
.exe

Linux (native) Linux graalvm, ubuntu-
tools

--gluon-desktop executable

macOS (native) macOS graalvm, xcode-
tools

--gluon-desktop executable, .dmg,
.pkg

9

Target platform Build platform Install command Build option Executable file(s)

Windows (native) Windows graalvm, vs-tools,
wix*

--gluon-desktop executable, .msi

Android (native) Linux graalvm, ubuntu-
tools

--gluon-android
(or --gluon-mobile)

.apk

iOS (native) macOS graalvm, xcode-
tools

--gluon-ios (or
--gluon-mobile)

.ipa

* these tools are optional, they are used to create installers (.msi or .exe)

We will now cover each target platform in detail.

You can open issues in the webfx-cli repository to report any bug you may
encounter.

Web platform
The GWT Maven plugin will be invoked to generate the web application.

You can use the following commands:

Long syntax

webfx build --gwt ①
webfx build --gwt --locate ②
webfx build --gwt --show ③
webfx run --gwt ④
webfx build --gwt --run ⑤

① Build the html executable file with the GWT Maven plugin

② Locate the generated executable file

③ Show the generated executable file in the file explorer

④ Execute the generated executable in the browser

⑤ Build the app and execute it in a single command

Short syntax

webfx build -g ①
webfx build -gl ②
webfx build -gs ③
webfx run -g ④
webfx build -gr ⑤

① Build the html executable file with the GWT Maven plugin

② Locate the generated executable file

10

https://github.com/webfx-project/webfx-cli
https://github.com/tbroyer/gwt-maven-plugin

③ Show the generated executable file in the file explorer

④ Execute the generated executable in the browser

⑤ Build the app and execute it in a single command

As opposed to --show, --locate works even before the build, as it prints the
expected location, whether the executable file is present or not.

The run command has exactly the same options as the build command. The only difference between
these 2 commands is that with run you can run the app without rebuilding it (unless --build is
specified), and with build you can build the app without running it (unless --run is specified).

In the next sections, we won’t repeat all these commands, we will use only the last command to
build and run the application in one go, but of course you can still choose to separate the build and
the run.

Desktop platform (JAR)

The desktop JAR executable is usually used for local testing. If you want to
distribute your desktop application, the embed JRE or native executables are
preferred, as they don’t require Java installed on the users machines.

The Maven Shade plugin will be invoked to generate an executable fat jar.

You can use the following command:

Long syntax

webfx build --openjfx-fatjar --run

Short syntax

webfx build -fr

You can combine the build options. For example webfx build --gwt --openjfx
-fatjar (short syntax: webfx build -gf) will build both the GWT html and OpenJFX
fat jar executables.

Desktop platform (embed JRE)
As opposed to the JAR, the embed JRE will be specific to the target platform. Therefore, a Linux
machine will build a Linux executable, a Mac a macOS executable, and a Windows machine a
Windows executable.

The JavaPackager Maven plugin will be invoked to generate the executables and installers for the
different platforms.

11

https://github.com/apache/maven-shade-plugin
https://github.com/fvarrui/JavaPackager

Prerequisite: you must install the following software for a successful build:

Linux

webfx install ubuntu-tools ①

① These tools are required by JavaPackager.

macOS

webfx install xcode ①

① Just checks that Xcode is installed with the correct path, otherwise suggest solutions.

Windows

webfx install wix ①
webfx install inno ②

① Optional. The WiX Toolset is used by JavaPackager to create a simple .msi installer.

② Optional. Inno Setup is used by JavaPackager to create a more elaborate .exe installer.

The CLI will help you to customize the installers (application name, icon, etc…) in a
next version. For now, we just use the default settings.

On macOS, you need to configure at least a Team ID in Xcode in order to make the
application runnable on your machine. We will provide a guide for this later.

Then, you can use the following command:

Long syntax

webfx build --openjfx-desktop --run

Short syntax

webfx build -kr

If the application fails to run on macOS, you can try webfx run -k --open to execute
it via the open command. This can open a problem report with more information.

Desktop platform (native)
Like for the embed JRE, 3 different machines are required to target the Linux, macOS, and
Windows executables.

The GluonFX Maven plugin will be invoked to generate the native desktops.

12

https://github.com/gluonhq/gluonfx-maven-plugin

Prerequisites: you must install the following software for a successful build:

Linux

webfx install graalvm ①
webfx install ubuntu-tools ①

① Required for the GluonFX Maven plugin

macOS

webfx install graalvm ①
webfx install xcode ②

① Required for the GluonFX Maven plugin

② Just checks that Xcode is installed with the correct path, otherwise suggest solutions.

Windows

webfx install graalvm ①
webfx install vs-tools ①
webfx install wix ②

① Required for the GluonFX Maven plugin

② Optional. The WiX Toolset is called by the GluonFX Maven plugin to create a simple .msi
installer.

On macOS, you need to configure at least a Team ID in Xcode in order to make the
application runnable on your machine. We will provide a guide for this later.

Then, you can use the below command:

Long syntax

webfx build --gluon-desktop --run

Short syntax

webfx build -dr

On machines that don’t support OpenGL (such as some Linux virtual machines),
JavaFX may report: Error initializing QuantumRenderer: no suitable pipeline
found. We will provide later an option to include the JavaFX software pipeline as a
backup, but this will increase the size of the executable.

13

Android platform
A Linux machine is required to build the Android executable.

The GluonFX Maven plugin will be invoked to generate the native Android application.

Prerequisites: you must install the following software for a successful build:

webfx install graalvm
webfx install ubuntu-tools

Then, you can use the following command:

Long syntax

webfx build --gluon-android --run

Short syntax

webfx build -ar

Alternatively, you can use the --gluon-mobile (short: -m) cross-platform option. It will be interpreted
as --gluon-android on Linux machines.

In this context, running the application means invoking the GluonFX Maven plugin to install and
run the generated package on your Android device connected to your Linux machine via USB. For
this to succeed, you must first activate the Developer mode and then the USB debugging option on
your Android device.

Only 64-bit architecture is supported (the installation will fail on 32-bit devices).
Please check your Android kernel version specifies x64.

iOS platform
A Mac is required to build the iOS executable.

The GluonFX Maven plugin will be invoked to generate the native iOS application.

Prerequisite: you must install the following software for a successful build:

webfx install graalvm
webfx install xcode

You also need a provisioning profile that links the app to your iOS device,
otherwise you won’t be able to install it on your device. We will provide a guide for
this later.

14

https://github.com/gluonhq/gluonfx-maven-plugin
https://github.com/gluonhq/gluonfx-maven-plugin

Then, you can use the following command:

Long syntax

webfx build --gluon-ios --run

Short syntax

webfx build -ir

Alternatively, you can use the --gluon-mobile (short: -m) cross-platform option. It will be interpreted
as --gluon-ios on Macs.

GitHub workflows
In a future release of the CLI we plan to support automatic generation of GitHub workflows. Each
push to the main branch of your GitHub repository will then trigger the generation of all your
executables on the Linux, macOS and Windows GitHub servers.

For now, you can check out the demos to see sample GitHub workflow configuration. For example,
the FX2048 GitHub workflow and the generated executables (expand the Assets link to view them).

Developing in your IDE
Instructions for IntelliJ IDEA are provided below, which can be quite easily transposed into other
Java IDEs.

Opening the project

Open the webfx-example directory from your Java IDE. It should recognize the directory as a
Maven project, and import it.

Building and running the OpenJFX application

Create an application configuration as follows:

15

https://github.com/webfx-demos/webfx-demo-fx2048/blob/main/.github/workflows/builds.yml
https://github.com/webfx-demos/webfx-demo-fx2048/releases

① select the OpenJFX application module

② enter dev.webfx.platform.boot.ApplicationBooter for the main class

You can just type AB for the main class, and your IDE should quickly find and
suggest the WebFX ApplicationBooter class.

The way to boot GWT and OpenJFX applications is different, but WebFX offers a cross-platform way
to do it. For this reason, the main class of a WebFX application is always
dev.webfx.platform.boot.ApplicationBooter. It will find your JavaFX application because it has been
automatically declared as a Java service by the CLI.

GWT normally doesn’t support the Java service API, but WebFX does, because the
CLI emulates it by generating a GWT super source. You can rely on this feature to
declare and implement your own services. Your services can even have platform-
dependent implementations. A service can be a cross-platform UI API for example,
with an OpenJFX implementation, and a different GWT implementation using the
JS library you want for your web app. We will document this later.

If you run this configuration, it will build and run your WebFX application in your IDE using the
OpenJFX runtime. This is the configuration that you will use to develop and debug your application.

Building and running the GWT application

As opposed to the OpenJFX version where the IDE can use its own Java build system, the GWT
version can only be built through Maven. One way to build it is to open a terminal window in your
IDE, and to type webfx build --gwt.

16

Another way is to trigger the build manually through the IDE Maven window.

① Activate the gwt-compile Maven profile

② Run the package Maven goal

It can be a good idea to create a configuration by selecting Modify Run Configuration in the context
menu of that package goal, and press OK in the window below. You can then easily run this
configuration to trigger the GWT build.

17

Once built, you can ask your IDE to open the generated html file in a browser.

① Locate the generated html file

18

② You can drag & drop it in the Bookmarks window for later

③ Select the browser you want to use to open it

Making changes

Let’s do a first little change by replacing the Text with a Button. At first sight, it looks an
insignificant change, but actually it’s not, because this involves a new dependency to the javafx-
controls module (our application was only using the javafx-graphics module so far). To take
advantage of the CLI, let’s enter the fully qualified Button class name like this:

public class ExampleApplication extends Application {

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setScene(new Scene(new StackPane(new
javafx.scene.control.Button("Hello world!")), 800, 600));
 primaryStage.show();
 }

}

The IDE doesn’t recognize this class yet, but let’s ask the CLI to update the build chain from the
terminal window:

webfx update

The CLI should make all necessary changes in the pom.xml, module-info.java, and module.gwt.xml
files. After a few seconds, your IDE should automatically detect and consider these changes. Then it
should recognize the Button class, and allow you to import it.

Finally, let’s add a simple code to react to the button:

public class ExampleApplication extends Application {

 @Override
 public void start(Stage primaryStage) {
 Button button = new Button("Hello world!");
 button.setOnAction(event -> button.setText("You clicked me!"));
 primaryStage.setScene(new Scene(new StackPane(button), 800, 600));
 primaryStage.show();
 }

}

You can first check the code is working as expected with the OpenJFX runtime by running the
OpenJFX configuration. And then build and run the GWT version using one of the methods already

19

explained.

Our application looks a bit sad? Maybe you can try this little code that adds a bit of colors,
animation and effect?

Some more creative ideas pop up in your mind? Now is the time to play with WebFX!

20

https://github.com/webfx-project/webfx-example/blob/main/webfx-example-application/src/main/java/org/example/webfxexample/WebFxExampleApplication.java

	WebFX Documentation
	Table of Contents
	Introduction
	What is WebFX?
	How it works
	Benefits
	Limitations

	Getting started
	Prerequisites
	Introducing the WebFX CLI
	Installing the WebFX CLI
	Creating your first WebFX app
	Web platform
	Desktop platform (JAR)
	Desktop platform (embed JRE)
	Desktop platform (native)
	Android platform
	iOS platform
	GitHub workflows
	Developing in your IDE

